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Small-angle X-ray diffraction patterns were recorded for a number of high-density polyethylene samples 
and were successively analysed by a fit with the calculated patterns corresponding to certain theoretical 
models. The parameters determined by the above fits were as follows: long-period, crystallinity, mean 
dimensions of the crystalline lamellae, amorphous thickness, crystallinity and lamellar dimension 
distributions. Regarding the latter, two mathematical functions were used for the fits, i.e. a symmetrical 
and an asymmetrical type, and for all of the samples examined the function was determined which gives the 
best results. Finally, a correlation is suggested between the polymer molecular weight and lamellar 
dimension distributions. Copyright 0 1996 Elsevier Science Ltd. 
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INTRODUCTION 

Small-angle X-ray scattering (SAXS) from crystalline 
polymers can give rise to rather broad peaks, which are 
interpretable in terms of one-dimensional models, based 
upon regular arrays of alternating crystalline (lamellae) 
and amorphous regions. 

The structural analysis of such peaks by the applica- 
tion of Bragg’s law allows an evaluation of the 
corresponding long-period, but this is a rather simplified 
approach which, for broad peaks, provides a long-period 
value which is affected by a number of errors when 
compared to the true lamellar periodicity. 

Some theoretical models, described in the literature’, 
allow a more satisfactory analysis of the above broad 
peaks based upon a distribution of the lamellar thickness 
and on the assumption that such a distribution can be 
described by symmetrical or asymmetrical functions. 
These models assume infinite lateral dimensions of the 
lamellae, and hence they account only for the electron 
density change along the stacking direction (normal to 
the lamellae) of the crystalline and amorphous boundary 
layers. Furthermore, the models take into account a 
finite or an infinite number of layers, which are 
characterized by a sharp electron-density transition at 
the crystal-amorphous interface. 

Some of these theoretical models were tested in 
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investigations of low-density polyethylene1?2, and in the 
present work they are applied to the analysis of high- 
density polyethylene (HDPE): actually, in this present 
work they were introduced into a minimization routine, 
in order to reach not only an evaluation of the best 
model, but also the calculation of the corresponding 
parameters giving the best fit of the SAXS peaks, i.e. the 
mean thickness of the crystalline and amorphous layers, 
their statistical distribution, the percentage crystallinity 
of the sample and finally, for some models, the crystal- 
linity distribution. 

THEORETICAL CONSIDERATIONS 

In the considered theoretical models, a lamellar stacking 
is assumed to have an infinite lateral width: as a 
consequence, a one-dimensional variation is considered 
for the electron density. Furthermore, the models assume 
a simplified two-phase structure, where crystalline and 
amorphous regions are obviously introduced, but 
transition layers are not considered: this schematic 
model is represented in Figure 1, where the crystalline 
thickness, the amorphous thickness and the total 
periodicity of the ith lamella are indicated by Yi, Z;, 
and Xi, respectively. 

The statistical fluctuation of the electron density 
along the lamellar normal can be described by the 
Hosemann’s mode13, where an independent variation is 
introduced for both of the crystal and amorphous region 
thicknesses. 
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Amorphous 

Distance along lamellar normal ___) 
Figure 1 Basic model for a lamellar stack 

According to this model, the intensity profile is given 
by the following: 

where: 

Z(s) = I&) + I&) (1) 

zB(s) = 
(PC - Pa)* 

47&9x 

x I1 - FYI?1 - IFZI’) + 11 - FZI’U - lF,l? (2) 

11 - FyFJ 

&(s) = (P, - I&)? 
27r~s’Xiv 

x Re Fz(1 - W’(l - (Wz)Y 
i (1 - F&)? 1 

(3) 

FY and F, are, respectively, the Fourier transforms of 
the distribution of the crystalline and amorphous 
thicknesses, s = (2sinB)/X, pC and pa represent the 
electron densities of the crystalline and amorphous 
regions, respectively, and N is the number of lamellae 
along the stacks. 

In this present paper, Four different theoretical models 
were considered, and these are discussed below. 

Simple lamellar stack moclri 
The first model considered4 is based upon a single 

lamellar stacking which represents. according to a 
statistical formulation, the whole of the sample; further- 
more, it assumes that the number of lamellae is so large 
that it can be considered as being infinite and as a 
consequence the term Z,(s) of equation (1) can be 
neglected. With respect to the distribution of the 
thicknesses of the amorphous and crystalline layers, a 
symmetric. as well as an asymmetric function, were 
considered. 

A typical symmetric distribution is provided by a 
Gaussian function such as the following: 

H(Y)= l 
0r(27r)“2 

exp y-n* 
i I 2a$ 

(4) 

where Y and gy are the average and the standard 
deviation of the crystal thicknesses. (A Gaussian function 

will give a positive probability for negative values of Y in 
the negative tail: to avoid this, it is sufficient to consider 
cr}. < OSY.) 

The corresponding Fourier transforms are as follows: 

F, = exp(-27r’s’a$) exp(-2tisY) (5) 

with the analogous functions, H(Z) and F(Z), referring 
to the amorphous thickness. 

The overall average long-period is J? = Y + Z, and the 
volume crystallinity of the system is Q = r/x; 
TT y and gz are related by the following formula’ : 

finally, 

cry/r = q/z (6) 

Among the asymmetrical functions, the exponential 
one was considered: in particular, in this present work, a 
modified exponential distribution’ was used, as follows: 

H(Y) = $exp[-iy~~yo)] for Y > Y, 

=o for Y < Y. (7) 

where the average thickness Y = Y. + oy. 
The Fourier transforms of this distribution can be 

represented in the following form: 

F, = 
1 

1 + 27risoy 
exp( -2tis Yo) 

Figures 2 and 3 show the calculated SAXS intensity 
curves corresponding to different standard deviations 
and for both a Gaussian and an exponential distribution, 
respectively. 

The theoretical intensity profiles were evaluated by 
putting X = 1.0 on a length scale L, and the average 
crystal thickness was set to be 0.5 L; furthermore. for 
simplicity, (TV = flz = (T. 

In the second model, a discrete number (N) of lamellae 
is introduced, which broadens the peaks, owing to the 
finite lattice size’; under this hypothesis, it is no longer 
possible to neglect the Z,(s) term of equation (1). 

Variable stack model 
A third model was considered, where an infinite 

number (N) of lamellae is introduced; however, it is 
assumed that there is a longer-range inhomogenity than 
in the single stack model, in which there are fluctuations 
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Figure 2 Calculated SAXS intensity curves based on the simple stack model with Gaussian thickness distributions 
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Figure 3 Calculated SAXS intensity curves based on the simple stack model with exponential thickness distributions 
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among the stacks, as well as fluctuations within each 
stack. 

The SAXS scattering is evaluated as the weight- 
average on all of the stacks: the model was proposed 
by Strobl and Mulle?, and was used in a particular form 
by Blundell’ , who considered a change in the local 
crystallinity between stack and stack. 

The crystallinity fluctuation in the sample is given by a 
normalized distribution function P(Q), which represents 
the probability that a well defined crystallinity is 
associated with a well determined stack volume. The 
intensity is then represented as follows: 

where it is assumed that P(Q) follows a Gaussian 
distribution. Moreover, it is assumed that the average 
thickness of the amorphous regions remains constant, 
while, in contrast. the average crystal thickness of each 
stack follows the distribution determined by P(Q). 

Finally, the last (fourth) model considered introduces 
into the calculations a finite number (1) of lamellae. 

EXPERIMENTAL 

Samples 
Homopolymer samples of high-density polyethylene 

(HDPE) were synthesized by a suspension process, using 
a Ziegler-Natta catalyst (Tic& supported on MgClz and 
activated by AlEt, in n-hexane as solvent). Samples for 
the wide-angle X-ray scattering (WAXS) and SAXS 
measurements were prepared by melting in a heated die 
for 10 min at 15O”C, after which the melted polymers 
were crystallized at 100°C for 60min (PEa, PEb, PEc. 
PEd) and at 130°C for 90min (PEc(iso). Ped(iso)) (see 
Table I), and finally cooled to room temperature. After 
this treatment, plates were obtained having a 2.5mm 
thickness. The density d (gem-“) of the plates was 
determined by a suitable density gradient column. 

The number-average (M,) and weight-average (M, ) 
molecular weights (see Table I) were evaluated by gel 
permeatio? chromatography in a Spherosil column 
(lo’-10’ A, 37-75 LLrn), using 1,2-dichlorobenzene as 
the eluent. 

Wide-angle X-ra), scattering 
WAXS patterns were recorded in the diffraction 

angular range, 20 = 5-120 ‘, by a Seifert MZ III 
powder diffractometer equipped with a graphite 
curved-crystal monochromator on the diffracted beam; 
CUK~Y radiation was employed. Application of the Vonk 

procedure6 gave values for the crystallinity by weight, 
@wAXS. of the samples, while the volume crystallinity, 
@VOL. was evaluated by using the following equation’: 

(10) 

where the crystal density dC was determined by WAXS, as 
described below, while for the amorphous density a value 
for da of 0.85 gcmp3 was assumed’. 

Small-angle X-ra?* scattering 
SAXS patterns were recorded by a Kratky camera. 

using CuKn radiation produced by a Philips PW 1830 
X-ray generator. The SAXS spectra were recorded by a 
Braun position-sensitive detector, over the scattering 
angular range 28 = 0.1-5.0’. and were successively 
corrected for blank scattering. 

A constant continuous background scattering” 
was subtracted and the obtained intensity values, 
j, were smoothed, in the tail region, with the aid of the 
sJ(s) ver.mS l/s’ plot. The Vonk desmearing procedure’ 
was then applied and the one-dimensional scattering 
function was obtained by the Lorentz correction: 
J1 (s) = 4ns2J(s), where J(s) is the desmeared intensity 
function and s = (2 sin 0)/x. 

The sum of the average thicknesses of the crystalline 
and amorphous regions was considered as the Bragg 
long-period, DB, of the function J,(s); the average 
lamellar thickness was calculated. for an ideal two- 
phase model, by using the following equationlO: 
Ca = ~~~~~~ (see Table I). 

C‘ulculation procedure 
The evaluation of the SAXS intensity corresponding 

to the considered models was carried out by the use of 
equation (1). The simulation algorithm is linked to the 
least-squares procedure MINUIT”, in order to allow an 
evaluation of the main structural parameters. The 
goodness of each fit is given by RWP, which accounts” 
for the weighted differences between the observed and 
calculated profiles. The parameters were optimized by a 
fit between the experimental and calculated SAXS 
patterns. 

For the simple lamellar stack model. the optimized 
parameters were as follows: 

(1) the number. N, of lamellae: 
(2) the average thickness, r, of the lamellae; 
(3) the crystallinity, Cp; 
(4) the standard deviation CT~, with reference to Y. 

Table 1 Values obtained for the molecular weights. crystalhnitq. Identlt! period and average lamellar thickness of the HDPE samples exammed m 
this study 

Sample 

PEa 

PEb 

PEc 

PEc(iso) 

PEd 

PEd(iso) 

M, 
Do~ragg 

M\% M\, ,’ ‘V,, @WAXS 

c H 

a \“I (A) (A) 

I 7 200 149 000 X.6 0.759 0.726 326 736 

16200 121000 7.5 0.766 0.734 310 227 

16200 83 000 5.1 0.794 0.764 283 7 1 6 

16200 83 000 5.1 0.814 0.788 368 290 

23 600 374 000 15.x 0.739 0.705 326 ‘30 

23 600 374 000 IS.8 0.787 0.758 349 765 
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The Z and cz values were evaluated by using the 
following: 

x=r+Z and @=r/x (11) 
from which: 

(12) 

from which: 

uz = (Q/Y)Z (14) 
In the case of the variable stack model, the optimized 
parameters were as follows: 

(1) the number, N, of lamellae; 
(2) the crystallinity, Q’; 
(3) the standard deviation (TV, with reference to a’; 
(4) the average thickness, Z, of the amorphous layer; 
(5) the standard deviation (or, with reference to r. 

The (TV value was determined as reported above, with 
r being given by the average of the calculated 
parameters according to the distribution P(a). 

RESULTS AND DISCUSSION 

The examined models were applied to the HDPE 
samples, by considering the distribution of the thick- 
nesses of the crystalline and amorphous layers corre- 
sponding to both the Gaussian and exponential 
functions. 

Table 2 R,, parameters for the simple lamellar stack and variable 
stack models 

RWP 

Samole 
Simple 
stack mode1 

PEa 0.0393 0.0161 59 
PEb 0.0262 0.0223 15 
PEc 0.0520 0.0249 52 
PEc(iso) 0.0291 0.0107 63 
PEd 0.0219 0.0113 48 
PEd(iso) 0.0326 0.0170 48 

Variable 
stack model 

a Percentage reduction in RWP for the variable stack model 

The fits obtained for the simple lamellar stack model, 
both for N = co and N being finite, generally show poor 
agreement. In Table 2, the best values are reported for 
Rw corresponding to both the simple lamellar stack and 
the variable stack models. 

Better results were obtained by using the variable stack 
model, both for the PE(a-d) and PE(c(iso),d(iso)) 
samples. The percentage reduction in RWP for the latter 
model is also reported in Table 2. Figure 4 shows the fits 
obtained for the various samples, while Table 3 lists the 
values of the fit parameters. 

First, it can be observed that for the PE(a-d) samples 
the data for the crystallinity Cp are comparable to the 
@voL values determined by WAXS, and that the 
standard deviations show low values, which are compar- 
able for all of the samples; this could be expected if we 
consider that these PE homopolymer samples were 
prepared by following the same procedure. 

Concerning the long-period parameter, good agree- 
ment can be observed for samples PEa and PEd, with 
lower values being obtained for the other two samples, 
particularly if one compares the above values with those 
obtained by applying Bragg’s law. Moreover, it can be 
noted that the mean dimensionqof the amorphous layers 
show a difference of only a few A from sample to sample, 
but in contrast the dimensions of the crystalline lamellae 
show larger fluctuations. 

However, different considerations need to be made 
concerning the samples obtained by isothermal crystal- 
lization. The crystallinity values obtained by the fits for 
PE(c(iso),d(iso)) show very good agreement with the 
data obtained from WAXS, and this is probably due to 
the fact that, owing to their thermal history, there are no 
amorphous or crystalline zones outside of the lamellar 
stacks in these samples. 

The long-period and lamellar thickness values for 
PE(c(iso),d(iso)) are greater when compared to the 
corresponding values for PE(c,d), while the amorphous 
thickness values are comparable for PEd and PEd(iso); 
moreover, for PEc(iso) the thickness is less than that 
calculated for PEc. 

Further comments can be made concerning the 
dimensions of the crystalline and amorphous layers: 
here it can be noted that for samples PEa, PEd and 
PEd(iso) the distribution which gives the best fit is the 
exponential one while for samples PEb, PEc and 
PEc(iso) the Gaussian one gives the best results. It can 
therefore be concluded that the lamellar distribution 

Table 3 Best-fit parameters obtained for the HDPE samples examined in this study 

Sample PEa PEb PEc PEc(iso) PEd PEd(iso) 
function exponential Gaussian Gaussian Gaussian exponential exponential 

14 21 39 32 43 59 

245 200 181 255 246 286 

83 83 88 69 90 96 

328 283 269 324 336 382 

0.746 0.707 0.674 0.787 0.733 0.749 

35 64 47 93 44 69 

12 27 23 25 16 23 

37 69 52 96 47 72 

0.06 0.05 0.05 0.03 0.07 0.09 

0.0161 0.0223 0.0249 0.0107 0.0113 0.0170 
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Figure 4 Best fits obtained between the observed and calculated SAXS intensity curves of the various samples: (a) PEa; (b) PEb; (c) PEc; (d) PEc(iso): 
(e) PEd: (f) PEd(iso). (Parameters are listed in Table 2) 
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function can show symmetrical or asymmetrical features, Table 1, which provide an indication of the molecular- 
and that the kind of function describing this distribution weight dispersion, it can be observed that within the 
must be evaluated in terms of each sample being same distribution type and the same sample preparation, 
examined. i.e. by comparing the samples PEa and PEd, and PEb 

Finally, if one considers the A?,/A?f, ratios, reported in and PEc, a correlation is found between the behaviour of 
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Figure 4 (Conrinued) 
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h?,/A?, and (I~ and oz: in effect, for a higher M,/A?,, PEc, and especially for PEb and PEc(iso), worse RWP 
ratio there are corresponding higher values of or and uZ. values can be noted when compared to the fit data 

Some analogous considerations can be made by relating to the Gaussian function (see Table 4). 
examining the results obtained for all of the samples Regarding the number of lamellae (N), values less than 
with respect to the same exponential function even if for 50 were found for PE(a-d), while N is greater than 50 for 
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Table 4 Fit parameters obtained for the HDPE samples examined in this study assuming the same (exponential) function for the lamellar distribution 

Sample PEa PEb 

N 14 21 

Y 245 250 
Z 83 81 
X 328 331 
cp 0.746 0.754 

OY 35 35 

cz 12 11 

UX 37 37 

go 0.06 0.06 

RWP 0.0161 0.0377 

PEc PEc(iso) PEd PEd(iso) 

29 DC: 43 59 
218 311 246 286 

74 85 90 96 
292 396 336 382 

0.745 0.786 0.733 0.749 
30 52 44 69 
10 14 16 23 
32 54 47 72 
0.05 0.07 0.07 0.09 
0.0297 0.0428 0.0113 0.0170 

PEd(iso), and reaches cc for PEc(iso). This could indicate 
the presence of more extended lamellar stacks when the 
samples are crystallized under isothermal conditions. 

CONCLUSIONS 

The model which gives the best values for the fitting of 
the SAXS patterns is the variable stack form, which has 
N < 50 for PE(a-d) (crystallized during cooling), and 
N > 50 for PE(c(iso),d(iso)) (crystallized under isother- 
mal conditions). 

The lamellar distributions in the examined HDPE 
samples seem to be in strict correlation with the 
molecular-weight distributions and in effect, within the 
same distribution function, the behaviour of tiw/A?, 
and (TV and a2 is quite similar. 

Moreover, it can also be concluded that the fit between 
the observed and calculated SAXS patterns provides 
values for both the long-period and crystallinity which 
show good agreement with those calculated by other 
methods. 
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